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The nature of the Heartbleed vulnerability [1] has been well described by several people
including Matthew Green [2], Chris Williams [3], Troy Hunt [4], Eric Limer [5], and Sean
Cassidy [6]. We appreciate their clear descriptions of the vulnerability, the code, and its
consequences. We want to take a different slant: what makes the Heartbleed vulnerability
difficult for automated tools to discover? First, we provide our thoughts on why both static
and dynamic assurance tools have a difficult time discovering the vulnerability and why
current defensive run-time measures were not successful. Second, we discuss how in the
future the SWAMP (Software Assurance Marketplace) [7] could serve as a valuable
resource for tool researchers and developers to facilitate the discovery of weaknesses that
are not found by existing tools, and to facilitate testing of new innovative tools.

Heartbleed created a significant challenge for current software assurance tools, and we do
not know of any such tools that were able to discover the Heartbleed vulnerability at the
time of announcement. The thing to remember is that this is one bug in one program
whose structure made the discovery of this bug particularly difficult. Software assurance
tools do find many real vulnerabilities. Coverity recently announced [8] an experimental
checker that finds Heartbleed using a simple heuristic, but is still undergoing testing with
other code bases to how far it generalizes and and its affect on the false positive rate.
GrammaTech has also announced [9] their efforts to find Heartbleed in a subset of OpenSLL
using more fundamental properties of the code. By analyzing a bug as Coverity and
GrammaTech have done, tools can be improved to detect previously undiscoverable bugs.

1. Background on Heartbleed

Heartbleed is a vulnerability in the OpenSSL [10] implementation of the TLS [11] and DTLS
[12] protocols (successors to SSL), specifically in the heartbeat extension [13]. The
vulnerability manifests itself in a similar manner in both TLS and DTLS, so our comments
about TLS apply equally to DTLS. TLS enables secure communications between two
processes residing on different hosts, most importantly used to secure web and e-mail. The
vulnerability can be exploited to leak confidential information from inside a process using
the OpenSSL library to another process when the two are communicating using the TLS
protocol. The leaked information can include usernames, passwords, emails, confidential
information entered or displayed on a web page, and authentication data, including secrets
keys used to protect all traffic connecting to the host.
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The crux of the problem is the failure of the OpenSSL library to validate two bytes of data
[14], a length field, received in a heartbeat request message that is processed by the
tls1_process_heartbeat function, partially shown below in Listing 1. The missing validation
is shown in the patch that fixes the vulnerability [15], shown in Listing 2. The heartbeat
protocol is supposed to echo back the data sent in the request where the amount is given
by the payload length field. An omniscient tool would know that 1) the contents of the
heartbeat request message (variable "p" on line 2556 of Listing 1) is supplied by an
untrusted source, 2) the payload length field (variable "payload” assigned in line 2563 of
Listing 1) is therefore also untrusted, 3) the beginning of the heartbeat payload is stored in
variable "p1", 4) the length of the containing TLS record is given by "s->s3_rrec.length", 5)
the payload length must be between 0 and the TLS record length minus 19, 6) the heartbeat
response message is being created in the lines 2580 to 2589, 7) the payload of the
heartbeat response message must be a copy of the payload of the heartbeat request
message (performed in line 2586 of Listing 1 using the memcpy function), and finally 8)
nothing enforces this constraint, allowing the memcpy in line 2586 of Listing 1 to read up
to 64KB of memory that it should not [16], and to exfiltrate it back to an attacker in line
2591 of Listing 1. Omniscient tools do not exist, and tools do not have the reasoning to
discern these facts. Instead, they operate on an abstraction of properties of the
programming language, libraries, commonly used idioms (both good and bad), heuristics, a
logic about how new facts are derived, and what evidence constitutes a safety violation.
Since the abstraction and analysis are simplifications, real problems are missed and false
problems are reported, but by improving the abstractions and analysis, the problems can
be reduced.

2. Static Analysis Tools

Static Code Analysis tools are software assurance tools that look for problems by
examining the source code of a program. These tools can find questionable use of user
supplied data and accessing the contents of an array outside its bounds. What properties of
the OpenSSL library made it difficult for an automated tool to discover? We postulate this
difficulty comes from four main sources: 1) the use of pointers, 2) the complexity of the
execution path from the buffer allocation to its misuse, 3) the valid bytes of the TLS
message are a subset of the allocated buffer, and 4) the contents of the buffer do not appear
to come directly from the attacker. Each of these is discussed next.

(a) Use of pointers

The use of pointers makes analysis of the correct use of memory difficult, because the size
of the buffer is not contained in the pointer but must be stored and managed separately
from the pointer. In C, the language in which OpenSSL is written, there are two ways to
create a buffer, statically declare an array variable in the source code where the size is
determined at compile time and is relatively easy for a tool to analyze, or declare a pointer
to a memory address and then assign as its value a buffer allocated with a run-time
computed size. In C, a pointer can point to the memory of statically allocated variables or
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to dynamically allocated buffers. The memory pointed to by a pointer can be deallocated or
modified multiple times during the execution of a program. All of these unknowns conspire
to make it difficult for an automated tool (or even human analyst) to determine the
properties of the memory pointed to by the pointer.

In the case of the Heartbleed vulnerability, there is a pointer to an output buffer where the
response is created (variable "buffer” on line 2580 of Listing 1). This buffer is dynamically
allocated in the tls1_process_heartbeat function. Since this buffer is allocated, used, and
freed in the same function, this pointer is relatively easy for a tool to analyze. There are no
problems with the use of this pointer. A second pointer points into the input buffer that
contains the heartbeat record. The value assigned to the second pointer (variable "p" on
line 2556 of Listing 1) is a pointer into a dynamically allocated buffer. This is the buffer

that is improperly used in the Heartbleed vulnerability.

Worse yet, the data structure passed to the function processing the heartbeat record is
passed as a pointer to a structure containing a pointer to a structure that contains fields
that point to the heartbeat record. (These fields include a pointer to the buffer containing
the record and the length.) All these levels of indirection make it unlikely that a tool is able
to keep track of the values used to create the buffer and how many bytes of the buffer are
valid.

Another use of pointers in the OpenSSL library that makes analyzing the code difficult is the
use of function pointers. To provide flexibility in the use of the OpenSSL library, the actual
function to call is determined at run-time a by configuration file or negotiation with the
peer. This use of pointers greatly increases the complexity of the analysis since the tool
must consider all possible combinations of all possible flows through the function,
including those that are not possible in actual use, as the tools do not analyze the
configuration file or understand the restrictions in the protocol. The space of possible
flows is huge for a library like OpenSSL so tools must make compromises in their analysis.
Some tools will not follow function pointers, while others make simplifying assumptions
that do not accurately reflect what the code actually does. All of these simplifications result
in a reduction of fidelity of the analysis.

(b) Complexity of the execution path from buffer allocation to misuse

The input buffer for the TLS session is dynamically allocated when a TLS session is first
started, is normally reused during the duration of the TLS session, and not released until
the session is closed. Another mode of operation creates a pool of buffers that are reused
between TLS sessions. In either case, a buffer likely comes from a pool of previously
allocated buffers for sending or receiving TLS data. There is no direct path (a chain of
function calls where data is passed from function to function) through the code from the
initial allocation of the memory to the writing of the memory and finally to the invalid use
that occurs in tls1_process_heartbeat. The path depends on the number of TLS
connections, their order, the calls into the OpenSSL library, and the order of packets
arriving from the network.
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Tracking all the permissible paths through the code and keeping track of all the values for
the variable makes it infeasible to do perfectly, or to produce results with low false
positives and low false negatives using approximation techniques.

(c) Valid bytes of the TLS message are a subset of the allocated buffer

For each session, there is an input buffer where data received from the network is placed as
itis read. The TLS message is contained in part of this buffer. The buffer is large enough to
be able to contain the largest permissible TLS record (16KB plus 1 to 2KB for overhead).
This buffer is also used to decompress and decrypt incoming data in place.

The TLS protocol is a layered protocol where different parts of the protocol can have
variable lengths. The outermost layer is called a TLS record, and there are five types of
records, the heartbeat record being one of these types. A TLS record consists of five bytes
of header (type, version, and length) and the rest of the data being a single message or
sequence of messages of the given record type. The OpenSSL library reads one record into
the input buffer using the length field of the header to determine the amount of data to
read. The rest of the record is usually encrypted, with an integrity checksum, and is
possibly compressed. The library decrypts, uncompresses, and verifies the message and, if
valid, calls a function that is specific to the record type to process the messages contained
within the record.

In the case of a heartbeat record, it contains exactly one heartbeat message. The message
contains four fields (type, length of the payload, payload, and padding). The type denotes a
request or a response. The length field denotes the length of the payload, while the length
of the padding is determined by subtracting the lengths of the other fields from the total
length of the other fields and must be a minimum of 16 bytes. These restrictions result in
the validation code shown in Listing 2.

The pointers to the message and the payload both point into the middle of a buffer, and the
contents of the message do not use the entire memory buffer. For a tool to track the
correct memory usage in a situation like this, a tool needs to track the boundaries of the
object and the containing buffer. This requires tracking four values: a pointer to the
message and its size, and a pointer to the containing buffer and its size. Three of the values,
at least in simple code and when using standard allocators, are straightforward to
compute: the pointer to the message, the pointer to the buffer, and the buffer's size. The
length of the message is much more difficult as it depends on the semantics of the program.
A trivial bound on the length of the message is the end of the containing buffer, but a more
precise constraint is very difficult to determine. Without knowing the length of the
message, accessing data beyond the end of the message will go undetected. Knowing the
size of the containing buffer would have potentially produced a warning in the case of
Heartbleed since the containing buffer is smaller than the range of the length field.

(d) Contents of the buffer do not appear to come directly from the attacker

A common technique used by static analysis tools is to perform taint analysis where data
that can come from an untrusted source, such as the network, is marked as being tainted
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and produces violations if tainted data is used in potentially unsafe manners. Then using
dataflow, the taintedness can be propagated to other values in the code. The problem for
the tool then becomes how the data becomes untainted. For a general purpose tool, it
places a large burden on the user if they manually have to declare that a value that would
be otherwise tainted is no longer tainted. To reduce the burden, most tools use heuristics
to determine when data becomes untainted. Usually the heuristic involves all the bytes of
the data being tested or used in a complex calculation to create a new value.

For a tool that does taint analysis of data, if the tool was sophisticated enough to propagate
the taint analysis through the multiple pointers, then the process of decrypting,
uncompressing, and verifying the integrity of the message may look enough like validation
of the data to mark the data as untainted.

A sophisticated tool might be able to point to tls1_process_heartbeat as using the read
buffer outside its bounds but would likely only point to the length field being unbounded
and the buffer having a size of 17-18KB. The use of the custom allocator would need to be
removed to make this possible. The bug would still be undetectable if a check improperly
restricted the data to 17-18KB as the input buffer is that size. Annotations in the code to
link relationships between pointers and variables that point inside the same buffer or
contain the length might enable tools to detect more defects.

3. Dynamic Analysis Tools

Dynamic analysis tools operate by monitoring a running application for violations of safety.
The dynamic tool has to be run and driven with test data, and that test data has to trigger
the violation if it is present in the code. This is the difficulty with dynamic assessment
tools; the results are only as good as the test data used to drive them. For bugs that occur
during normal operations using unmodified code, dynamic tools can be quite useful.

One family of dynamic analysis tools detects unsafe use of memory. A tool such as this is
ValGrind [17], which can detect access to uninitialized memory or to memory outside of a
properly allocated memory.

[t appears that this type of tool should have been able to find the Heartbleed vulnerability
at the time that memory is accessed outside the valid buffer range, but it does not for a
couple of reasons.

First, the Heartbleed bug is not triggered by a client using an unmodified (correctly
operating) TLS library as TLS implementations never send a malformed heartbeat message.
To use a dynamic tool would first require that a modified library be created with test data
that produces the malformed packet. This is a non-trivial task. One method that might
prove fruitful to find Heartbleed and similar problems would be to create hooks to mutate
the message data using a form of fuzz testing before it is encrypted and sent to the other
side. This fuzz testing has the potential to cause the other end of the TLS connection to
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return records that are invalid. In the case of a heartbeat, the record would contain a
message that is too large, and the size of the response would be different than the size sent.

Second, tools will not automatically recognize the use of non-standard calls that allocate or
release memory, and OpenSSL uses a custom memory allocator that caches previously
allocated and unneeded memory blocks for reuse. To a dynamic analysis tool, it appears as
if the library allocates many blocks of memory once and uses them long term since the
characteristic acquire (malloc) and release (free) APIs are not used. This allows the
Heartbleed reads to read memory that was initialized by a previous session to appear to be
valid to a dynamic tool.

Dynamic tools hold promise in detecting this type of problem with the one time expense of
writing a custom library that can act as a fuzzing engine. The custom allocator would also
have to be disabled, and the errors would present themselves faster if buffer reuse was
disabled and if buffers were allocated to the exact size necessary.

4. Protective Run-time Measures

One protective run-time measure that could have detected Heartbleed or at least restricted
the amount of memory that could have been exfiltrated is a memory allocator that uses
guard pages around allocated memory blocks and unmaps memory that has been freed.
Attempted access to a guard page or freed memory results in fault that causes the program
to terminate. Also, when a buffer is allocated, the content of the memory is zeroed, which
also reduces the risk of leaking data. This type of protection is common in modern heap
management code, but usually only for blocks of memory that are larger than those used by
OpenSSL.

OpenBSD has an option to enable guard pages around memory allocations that would have
been useful to somewhat mitigate the exfiltration of Heartbleed defect, but it must be
enabled. It is not a complete mitigation as it causes the program to crash, and the caching
allocator prevents the contents of previous session data from being cleared. Theo de Raadt
from the OpenBSD project and another developer commented on exactly this fact [18].

5. The SWAMP as a Resource for Tool Research and Development

The SWAMP provides a facility that can help researchers and developers improve their
software assurance tools. Some of the key services provided by the SWAMP are its
collection of reference data sets (programs with known weaknesses and vulnerabilities)
and the ability to continuously run multiple tools side-by-side, comparing their results.

Right now, the SWAMP provides a corpus of about 400 diverse software packages and test
suites. Many of these are known to have known weaknesses or vulnerabilities. In the
future, the SWAMP will greatly increase this corpus of software packages. The SWAMP
automates the application of a tool against any or all of the packages in the SWAMP. The
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same can be done with any of the tools in the SWAMP and results viewed together. This
allows a tool developer to discover defects found by other tools, but not their own tool. The
unified view of tools provides the basis for tool developers to identify gaps in their tools.
This insight can be valuable for tool developers as they are now able to create techniques to
improve the coverage areas in their own tool.

In addition, the SWAMP will add software packages, along with a description of known
vulnerabilities within the software and locations known to be vulnerability-free (places
that were previously known to be reported as a false positive). An initial version of the
data for the bug locations and description could be gathered from bug databases and
source code repositories or by manual entry. Another source of data is by running the tools
that are part of the SWAMP and making those results available. The quality of this data
could then be improved using human analyst and crowd sourcing techniques to triage the
results. Over time, this will refine the results, increasing the quality.

With respect to new and serious vulnerabilities such as Heartbleed, the SWAMP has several
things to offer. First, we can easily incorporate new tools and new types of tools. For
example, OpenSSL has been criticized as to some of the programming style and engineering
choices that were made (or that evolved). A software engineering tool that evaluated style,
as opposed to particular weaknesses or vulnerabilities, could help the designers simplify
their code, making it less likely to have obscure weaknesses and more easily let tools detect
such weaknesses.

Second, we can quickly incorporate new test cases. For example, we have produced a
simplified version of the Heartbleed vulnerability, Heartbit [19], and present that as a
software package in the SWAMP. Such a package provides an easy-to-use test case for tools
developing new heuristics for such cases and for tools taking on the greater challenge of
first principles attacks on such weaknesses.

Third, we can allow an open comparison and combination of a variety of types of tools,
including static and dynamic code analysis, source and binary, and run-time monitoring.
The goal is to provide the best tool or combination of tools for each situation.

The SWAMP is designed to help facilitate technical exchange and research collaboration in
the software assurance community that will help enable new discoveries, improvements,
and advancements in software development and software assurance activities. As new
attacks emerge, new defenses will be needed in response to these attacks. The SWAMP’s
goal is to try to stay ahead of (or at least keep pace with) the bad guys, providing key
resources and services to the software assurance community to improve and maintain the
quality of software.
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Listing 1. tlsl_process_heartbeat function containing Heartbleed vulnerability
from OpenSSL version 1.0.1f

2554 tlsl process heartbeat (SSL *s)

2555 {

2556 unsigned char *p = &s->s3->rrec.datal[0], *pl;

2557 unsigned short hbtype;

2558 unsigned int payload;

2559 unsigned int padding = 16; /* Use minimum padding */
2560

2561 /* Read type and payload length first */

2562 hbtype = *p++;

2563 n2s (p, payload);

2564 rl = p;

2565

2566 if (s->msg_callback)

2567 s->msg_callback (0, s->version, TLS1 RT HEARTBEAT,
2568 &s->s3->rrec.data[0], s->s3->rrec.length,

2569 s, s->msg_callback arg);

2570

2571 if (hbtype == TLS1 HB REQUEST)

2572 {

2573 unsigned char *buffer, *bp;

2574 int r;

2575

2576 /* Allocate memory for the response, size is 1 bytes
2577 * message type, plus 2 bytes payload length, plus
2578 * payload, plus padding

2579 */

2580 buffer = OPENSSL malloc(l + 2 + paylocad + padding);
2581 bp = buffer;

2582

2583 /* Enter response type, length and copy payload */
2584 *bp++ = TLS1 HB RESPONSE;

2585 s2n (payload, bp);

2586 memcpy (bp, pl, payload);

2587 bp += payload;

2588 /* Random padding */

2589 RAND pseudo bytes (bp, padding);

2590

2591 r = ssl3 write bytes (s, TLS1 RT HEARTBEAT, buffer,

3 + payload + padding);
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Listing 2. Validation code to remediate Heartbleed; follows line 2569 of Listing 1

/* Read type and payload length first */
if (1 + 2 + 16 > s->s3->rrec.length)
return 0; /* silently discard */
hbtype = *p++;
n2s (p, payload);
if (1 + 2 + payload + 16 > s—->s3->rrec.length)
return 0; /* silently discard per RFC 6520 sec. 4 */

pl = p;
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